Skip to main content

How to configure a new Checkpoint using test_yaml_config

This how-to guide demonstrates advanced examples for configuring a Checkpoint using test_yaml_config. Note: For a basic guide on creating a new Checkpoint, please see How to create a new Checkpoint.

test_yaml_config is a convenience method for configuring the moving parts of a Great Expectations deployment. It allows you to quickly test out configs for Datasources, Stores, and Checkpoints. test_yaml_config is primarily intended for use within a notebook, where you can iterate through an edit-run-check loop in seconds.

Steps#

  1. Additional SimpleCheckpoint configuration examples. The SimpleCheckpoint class takes care of some defaults which you will need to set manually in the Checkpoints class. The following example shows all possible configuration options for SimpleCheckpoint:

    config = """name: my_simple_checkpointconfig_version: 1.0class_name: SimpleCheckpointvalidations:  - batch_request:      datasource_name: data__dir      data_connector_name: my_data_connector      data_asset_name: TestAsset      data_connector_query:        index: 0    expectation_suite_name: yellow_tripdata_sample_2019-01.warningsite_names: my_local_siteslack_webhook: my_slack_webhook_urlnotify_on: all # possible values: "all", "failure", "success"notify_with: # optional list of DataDocs site names to display in Slack message"""
  2. Additional Checkpoint configuration examples. If you require more fine-grained configuration options, you can use the Checkpoint base class instead of SimpleCheckpoint.

    In this example, the Checkpoint configuration uses the nesting of batch_request sections inside the validations block so as to use the defaults defined at the top level.

    config = """name: my_fancy_checkpointconfig_version: 1class_name: Checkpointrun_name_template: "%Y-%M-foo-bar-template-$VAR"validations:  - batch_request:      datasource_name: my_datasource      data_connector_name: my_special_data_connector      data_asset_name: users      data_connector_query:        index: -1  - batch_request:      datasource_name: my_datasource      data_connector_name: my_other_data_connector      data_asset_name: users      data_connector_query:        index: -2expectation_suite_name: users.deliveryaction_list:    - name: store_validation_result      action:        class_name: StoreValidationResultAction    - name: store_evaluation_params      action:        class_name: StoreEvaluationParametersAction    - name: update_data_docs      action:        class_name: UpdateDataDocsActionevaluation_parameters:  param1: "$MY_PARAM"  param2: 1 + "$OLD_PARAM"runtime_configuration:  result_format:    result_format: BASIC    partial_unexpected_count: 20"""

    The following Checkpoint configuration runs the top-level action_list against the top-level batch_request as well as the locally-specified action_list against the top-level batch_request.

    config = """name: airflow_users_node_3config_version: 1class_name: Checkpointbatch_request:    datasource_name: my_datasource    data_connector_name: my_special_data_connector    data_asset_name: users    data_connector_query:        index: -1validations:  - expectation_suite_name: users.warning  # runs the top-level action list against the top-level batch_request  - expectation_suite_name: users.error  # runs the locally-specified action_list union with the top-level action-list against the top-level batch_request    action_list:    - name: quarantine_failed_data      action:          class_name: CreateQuarantineData    - name: advance_passed_data      action:          class_name: CreatePassedDataaction_list:    - name: store_validation_result      action:        class_name: StoreValidationResultAction    - name: store_evaluation_params      action:        class_name: StoreEvaluationParametersAction    - name: update_data_docs      action:        class_name: UpdateDataDocsActionevaluation_parameters:    environment: $GE_ENVIRONMENT    tolerance: 0.01runtime_configuration:    result_format:      result_format: BASIC      partial_unexpected_count: 20"""

    The Checkpoint mechanism also offers the convenience of templates. The first Checkpoint configuration is that of a valid Checkpoint in the sense that it can be run as long as all the parameters not present in the configuration are specified in the run_checkpoint API call.

    config = """name: my_base_checkpointconfig_version: 1class_name: Checkpointrun_name_template: "%Y-%M-foo-bar-template-$VAR"action_list:- name: store_validation_result  action:    class_name: StoreValidationResultAction- name: store_evaluation_params  action:    class_name: StoreEvaluationParametersAction- name: update_data_docs  action:    class_name: UpdateDataDocsActionevaluation_parameters:  param1: "$MY_PARAM"  param2: 1 + "$OLD_PARAM"runtime_configuration:    result_format:      result_format: BASIC      partial_unexpected_count: 20"""

    The above Checkpoint can be run using the code below, providing missing parameters from the configured Checkpoint at runtime.

    checkpoint_run_result: CheckpointResult
    checkpoint_run_result = data_context.run_checkpoint(    checkpoint_name="my_base_checkpoint",    validations=[        {            "batch_request": {                "datasource_name": "my_datasource",                "data_connector_name": "my_special_data_connector",                "data_asset_name": "users",                "data_connector_query": {                    "index": -1,                },            },            "expectation_suite_name": "users.delivery",        },        {            "batch_request": {                "datasource_name": "my_datasource",                "data_connector_name": "my_other_data_connector",                "data_asset_name": "users",                "data_connector_query": {                    "index": -2,                },            },            "expectation_suite_name": "users.delivery",        },    ],)

    However, the run_checkpoint method can be simplified by configuring a separate Checkpoint that uses the above Checkpoint as a template and includes the settings previously specified in the run_checkpoint method:

    config = """name: my_fancy_checkpointconfig_version: 1class_name: Checkpointtemplate_name: my_base_checkpointvalidations:- batch_request:    datasource_name: my_datasource    data_connector_name: my_special_data_connector    data_asset_name: users    data_connector_query:      index: -1- batch_request:    datasource_name: my_datasource    data_connector_name: my_other_data_connector    data_asset_name: users    data_connector_query:      index: -2expectation_suite_name: users.delivery"""

    Now the run_checkpoint method is as simple as in the previous examples:

    checkpoint_run_result = context.run_checkpoint(    checkpoint_name="my_fancy_checkpoint",)

    The checkpoint_run_result in both cases (the parameterized run_checkpoint method and the configuration that incorporates another configuration as a template) are the same.

    The final example presents a Checkpoint configuration that is suitable for the use in a pipeline managed by Airflow.

    config = """name: airflow_checkpointconfig_version: 1class_name: Checkpointvalidations:- batch_request:    datasource_name: my_datasource    data_connector_name: my_runtime_data_connector    data_asset_name: IN_MEMORY_DATA_ASSETexpectation_suite_name: users.deliveryaction_list:    - name: store_validation_result      action:        class_name: StoreValidationResultAction    - name: store_evaluation_params      action:        class_name: StoreEvaluationParametersAction    - name: update_data_docs      action:        class_name: UpdateDataDocsAction"""

    To run this Checkpoint, the batch_request with the batch_data nested under the runtime_parameters attribute needs to be specified explicitly as part of the run_checkpoint() API call, because the the data to be validated is accessible only dynamically during the execution of the pipeline.

    checkpoint_run_result: CheckpointResult = data_context.run_checkpoint(    checkpoint_name="airflow_checkpoint",    batch_request={        "runtime_parameters": {            "batch_data": my_data_frame,        },        "data_connector_query": {            "batch_filter_parameters": {                "airflow_run_id": airflow_run_id,            }        },    },    run_name=airflow_run_id,)