Skip to main content
Version: 1.3.3

PandasDatasource

class great_expectations.datasource.fluent.PandasDatasource(*, type: Literal['pandas'] = 'pandas', name: str, id: Optional[uuid.UUID] = None, assets: List[great_expectations.datasource.fluent.pandas_datasource._PandasDataAsset] = [])#

Adds a single-batch pandas datasource to the data context.

Parameters
  • name – The name of this datasource.

  • assets – An optional dictionary whose keys are Pandas DataAsset names and whose values are Pandas DataAsset objects.

Methods

add_clipboard_asset(name: str, *, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, sep: str = '\s+', dtype_backend: DtypeBackend = None, kwargs: Optional[dict] = None, **extra_data: Any) pydantic.v1.main.ClipboardAsset#

Add a clipboard data asset to the datasource.

Parameters
  • name – The name of the clipboard asset. This can be any arbitrary string.

  • **kwargs – Additional keyword arguments to pass to pandas.read_clipboard().

Returns

The ClipboardAsset that has been added to this datasource.

add_csv_asset(name: str, filepath_or_buffer: pydantic.v1.types.FilePath | pydantic.v1.networks.AnyUrl, *, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, sep: Optional[str] = None, delimiter: Optional[str] = None, header: Union[int, Sequence[int], None, Literal['infer']] = 'infer', names: Union[Sequence[str], None] = None, index_col: Union[IndexLabel, Literal[False], None] = None, usecols: Optional[Union[int, str, Sequence[int]]] = None, dtype: Optional[dict] = None, engine: Union[CSVEngine, None] = None, true_values: Optional[List] = None, false_values: Optional[List] = None, skipinitialspace: bool = False, skiprows: Optional[Union[Sequence[int], int]] = None, skipfooter: int = 0, nrows: Optional[int] = None, na_values: Union[Sequence[str], None] = None, keep_default_na: bool = True, na_filter: bool = True, verbose: bool = False, skip_blank_lines: bool = True, parse_dates: Union[bool, Sequence[str], None] = None, infer_datetime_format: bool = None, keep_date_col: bool = False, date_format: Optional[str] = None, dayfirst: bool = False, cache_dates: bool = True, iterator: bool = False, chunksize: Optional[int] = None, compression: CompressionOptions = 'infer', thousands: Optional[str] = None, decimal: str = '.', lineterminator: Optional[str] = None, quotechar: str = '"', quoting: int = 0, doublequote: bool = True, escapechar: Optional[str] = None, comment: Optional[str] = None, encoding: Optional[str] = None, encoding_errors: Optional[str] = 'strict', dialect: Optional[str] = None, on_bad_lines: str = 'error', delim_whitespace: bool = False, low_memory: bool = True, memory_map: bool = False, float_precision: Union[Literal['high', 'legacy'], None] = None, storage_options: Union[StorageOptions, None] = None, dtype_backend: DtypeBackend = None, **extra_data: Any) pydantic.v1.main.CSVAsset#

Add a CSV data asset to the datasource.

Parameters
  • name – The name of the CSV asset. This can be any arbitrary string.

  • filepath_or_buffer – The path to the CSV file or a URL pointing to the CSV file.

  • **kwargs – Additional keyword arguments to pass to pandas.read_csv().

Returns

The CSVAsset that has been added to this datasource.

add_dataframe_asset(name: str, batch_metadata: Optional[BatchMetadata] = None) DataFrameAsset#

Adds a Dataframe DataAsset to this PandasDatasource object.

Parameters
  • name – The name of the Dataframe asset. This can be any arbitrary string.

  • batch_metadata – An arbitrary user defined dictionary with string keys which will get inherited by any batches created from the asset.

Returns

The DataFameAsset that has been added to this datasource.

add_excel_asset(name: str, io: os.PathLike | str | bytes, *, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, sheet_name: Optional[Union[str, int, List[Union[int, str]]]] = 0, header: Union[int, Sequence[int], None] = 0, names: Optional[List[str]] = None, index_col: Union[int, Sequence[int], None] = None, usecols: Optional[Union[int, str, Sequence[int]]] = None, dtype: Optional[dict] = None, engine: Union[Literal['xlrd', 'openpyxl', 'odf', 'pyxlsb'], None] = None, true_values: Union[Iterable[str], None] = None, false_values: Union[Iterable[str], None] = None, skiprows: Optional[Union[Sequence[int], int]] = None, nrows: Optional[int] = None, na_values: Any = None, keep_default_na: bool = True, na_filter: bool = True, verbose: bool = False, parse_dates: Union[List, Dict, bool] = False, date_format: Optional[str] = None, thousands: Optional[str] = None, decimal: str = '.', comment: Optional[str] = None, skipfooter: int = 0, storage_options: Union[StorageOptions, None] = None, dtype_backend: DtypeBackend = None, engine_kwargs: Optional[Dict] = None, **extra_data: Any) ExcelAsset#

Add an Excel data asset to the datasource.

Parameters
  • name – The name of the Excel asset. This can be any arbitrary string.

  • io – The path to the Excel file or a URL pointing to the Excel file.

  • **kwargs – Additional keyword arguments to pass to pandas.read_excel().

Returns

The ExcelAsset that has been added to this datasource.

add_feather_asset(name: str, path: pydantic.v1.types.FilePath | pydantic.v1.networks.AnyUrl, *, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, columns: Union[Sequence[str], None] = None, use_threads: bool = True, storage_options: Union[StorageOptions, None] = None, dtype_backend: DtypeBackend = None, **extra_data: Any) pydantic.v1.main.FeatherAsset#

Add a Feather data asset to the datasource.

Parameters
  • name – The name of the Feather asset. This can be any arbitrary string.

  • path – The path to the Feather file or a URL pointing to the Feather file.

  • **kwargs – Additional keyword arguments to pass to pandas.read_feather().

Returns

The FeatherAsset that has been added to this datasource.

add_fwf_asset(name: str, filepath_or_buffer: pydantic.v1.types.FilePath | pydantic.v1.networks.AnyUrl, *, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, colspecs: Union[Sequence[Tuple[int, int]], str, None] = 'infer', widths: Union[Sequence[int], None] = None, infer_nrows: int = 100, dtype_backend: DtypeBackend = None, kwargs: Optional[dict] = None, **extra_data: Any) pydantic.v1.main.FeatherAsset#

Adds a Fixed Width File DataAsset to the datasource.

Parameters
  • filepath_or_buffer – The path to the file or a URL pointing to the Feather file.

  • asset_name – The name of the asset, should you wish to use it again.

  • **kwargs – Additional keyword arguments to pass to pandas.read_fwf().

Returns

The FWFAsset that has been added to this datasource.

add_gbq_asset(name: str, query: str, *, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, project_id: Optional[str] = None, index_col: Optional[str] = None, col_order: Optional[List[str]] = None, reauth: bool = False, auth_local_webserver: bool = True, dialect: Optional[str] = None, location: Optional[str] = None, configuration: Optional[Dict[str, Any]] = None, use_bqstorage_api: Optional[bool] = None, max_results: Optional[int] = None, progress_bar_type: Optional[str] = None, **extra_data: Any) pydantic.v1.main.GBQAsset#

Add a GBQ data asset to the datasource.

Parameters
  • name – The name of the GBQ asset. This can be any arbitrary string.

  • query – The SQL query to send to Google BigQuery.

  • **kwargs – Additional keyword arguments to pass to pandas.read_gbq().

Returns

The GBQAsset that has been added to this datasource.

add_hdf_asset(name: str, path_or_buf: pd.HDFStore | os.PathLike | str, *, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, key: Any = None, mode: str = 'r', errors: str = 'strict', where: Optional[Union[str, List]] = None, start: Optional[int] = None, stop: Optional[int] = None, columns: Optional[List[str]] = None, iterator: bool = False, chunksize: Optional[int] = None, kwargs: Optional[dict] = None, **extra_data: Any) HDFAsset#

Add an HDF data asset to the datasource.

Parameters
  • name – The name of the HDF asset. This can be any arbitrary string.

  • path_or_buf – The path to the HDF file or a URL pointing to the HDF file.

  • **kwargs – Additional keyword arguments to pass to pandas.read_hdf().

Returns

The HDFAsset that has been added to this datasource.

add_html_asset(name: str, io: os.PathLike | str, *, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, match: Union[str, Pattern] = '.+', flavor: Optional[str] = None, header: Union[int, Sequence[int], None] = None, index_col: Union[int, Sequence[int], None] = None, skiprows: Optional[Union[Sequence[int], int]] = None, attrs: Optional[Dict[str, str]] = None, parse_dates: bool = False, thousands: Optional[str] = ',', encoding: Optional[str] = None, decimal: str = '.', converters: Optional[Dict] = None, na_values: Union[Iterable[object], None] = None, keep_default_na: bool = True, displayed_only: bool = True, extract_links: Literal[None, 'header', 'footer', 'body', 'all'] = None, dtype_backend: DtypeBackend = None, storage_options: StorageOptions = None, **extra_data: Any) HTMLAsset#

Add an HTML data asset to the datasource.

Parameters
  • name – The name of the HTML asset. This can be any arbitrary string.

  • io – The path to the HTML file or a URL pointing to the HTML file.

  • **kwargs – Additional keyword arguments to pass to pandas.read_html().

Returns

The HTMLAsset that has been added to this datasource.

add_json_asset(name: str, path_or_buf: pydantic.v1.types.Json | pydantic.v1.types.FilePath | pydantic.v1.networks.AnyUrl, *, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, orient: Optional[str] = None, typ: Literal['frame', 'series'] = 'frame', dtype: Optional[dict] = None, convert_axes: Optional[bool] = None, convert_dates: Union[bool, List[str]] = True, keep_default_dates: bool = True, precise_float: bool = False, date_unit: Optional[str] = None, encoding: Optional[str] = None, encoding_errors: Optional[str] = 'strict', lines: bool = False, chunksize: Optional[int] = None, compression: CompressionOptions = 'infer', nrows: Optional[int] = None, storage_options: Union[StorageOptions, None] = None, dtype_backend: DtypeBackend = None, **extra_data: Any) pydantic.v1.main.JSONAsset#

Add a JSON data asset to the datasource.

Parameters
  • name – The name of the JSON asset. This can be any arbitrary string.

  • path_or_buf – The path to the JSON file or a URL pointing to the JSON file.

  • **kwargs – Additional keyword arguments to pass to pandas.read_json().

Returns

The JSONAsset that has been added to this datasource.

add_orc_asset(name: str, path: pydantic.v1.types.FilePath | pydantic.v1.networks.AnyUrl, *, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, columns: Optional[List[str]] = None, dtype_backend: DtypeBackend = None, kwargs: Optional[dict] = None, **extra_data: Any) pydantic.v1.main.ORCAsset#

Add an ORC file as a DataAsset to this PandasDatasource object.

Parameters
  • name – The name to use for the ORC asset. This can be any arbitrary string.

  • path – The path to the ORC file.

  • **kwargs – Additional kwargs to pass to the ORC reader.

Returns

The ORCAsset that has been added to this datasource.

add_parquet_asset(name: str, path: pydantic.v1.types.FilePath | pydantic.v1.networks.AnyUrl, *, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, engine: str = 'auto', columns: Optional[List[str]] = None, storage_options: Union[StorageOptions, None] = None, use_nullable_dtypes: bool = None, dtype_backend: DtypeBackend = None, kwargs: Optional[dict] = None, **extra_data: Any) pydantic.v1.main.ParquetAsset#

Add a parquet file as a DataAsset to this PandasDatasource object.

Parameters
  • name – The name to use for the parquet asset. This can be any arbitrary string.

  • path – The path to the parquet file.

  • **kwargs – Additional kwargs to pass to the parquet reader.

Returns

The ParquetAsset that has been added to this datasource.

add_pickle_asset(name: str, filepath_or_buffer: pydantic.v1.types.FilePath | pydantic.v1.networks.AnyUrl, *, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, compression: CompressionOptions = 'infer', storage_options: Union[StorageOptions, None] = None, **extra_data: Any) pydantic.v1.main.PickleAsset#

Add a pickle file as a DataAsset to this PandasDatasource object.

Parameters
  • name – The name to use for the pickle asset. This can be any arbitrary string.

  • filepath_or_buffer – The path to the pickle file.

  • **kwargs – Additional kwargs to pass to the pickle reader.

Returns

The PickleAsset that has been added to this datasource.

add_sas_asset(name: str, filepath_or_buffer: pydantic.v1.types.FilePath | pydantic.v1.networks.AnyUrl, *, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, format: Optional[str] = None, index: Optional[str] = None, encoding: Optional[str] = None, chunksize: Optional[int] = None, iterator: bool = False, compression: CompressionOptions = 'infer', **extra_data: Any) pydantic.v1.main.SASAsset#

Add a SAS data asset to the datasource.

Parameters
  • name – The name of the SAS asset. This can be any arbitrary string.

  • filepath_or_buffer – The path to the SAS file or a URL pointing to the SAS file.

  • **kwargs – Additional keyword arguments to pass to pandas.read_sas().

Returns

The SASAsset that has been added to this datasource.

add_spss_asset(name: str, path: pydantic.v1.types.FilePath, *, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, usecols: Optional[Union[int, str, Sequence[int]]] = None, convert_categoricals: bool = True, dtype_backend: DtypeBackend = None, **extra_data: Any) pydantic.v1.main.SPSSAsset#

Add an SPSS data asset to the datasource.

Parameters
  • name – The name of the SPSS asset. This can be any arbitrary string.

  • path – The path to the SPSS file.

  • **kwargs – Additional keyword arguments to pass to pandas.read_spss().

Returns

The SPSSAsset that has been added to this datasource.

add_sql_asset(name: str, sql: sa.select | sa.text | str, con: sqlalchemy.Engine | sqlite3.Connection | str, *, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, index_col: Optional[Union[str, List[str]]] = None, coerce_float: bool = True, params: Any = None, parse_dates: Any = None, columns: Optional[List[str]] = None, chunksize: Optional[int] = None, dtype_backend: DtypeBackend = None, dtype: Optional[dict] = None, **extra_data: Any) SQLAsset#

Add a SQL data asset to the datasource.

Parameters
  • name – The name of the SQL asset. This can be any arbitrary string.

  • sql – The SQL query to send to the database.

  • con – The SQLAlchemy connection engine or a string URL to connect to the database.

  • **kwargs – Additional keyword arguments to pass to pandas.read_sql().

Returns

The SQLAsset that has been added to this datasource.

add_sql_query_asset(name: str, sql: sa.select | sa.text | str, con: sqlalchemy.Engine | sqlite3.Connection | str, *, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, index_col: Optional[Union[str, List[str]]] = None, coerce_float: bool = True, parse_dates: Optional[Union[List[str], Dict[str, str]]] = None, chunksize: Optional[int] = None, dtype: Optional[dict] = None, dtype_backend: DtypeBackend = None, **extra_data: Any) SQLQueryAsset#

Add a SQL query data asset to the datasource.

Parameters
  • name – The name of the SQL query asset. This can be any arbitrary string.

  • sql – The SQL query to send to the database.

  • con – The SQLAlchemy connection engine or a string URL to connect to the database.

  • **kwargs – Additional keyword arguments to pass to pandas.read_sql_query().

Returns

The SQLQueryAsset that has been added to this datasource.

add_sql_table_asset(name: str, table_name: str, con: sqlalchemy.engine.base.Engine | str, *, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, schema: Optional[str] = None, index_col: Optional[Union[str, List[str]]] = None, coerce_float: bool = True, parse_dates: Optional[Union[List[str], Dict[str, str]]] = None, columns: Optional[List[str]] = None, chunksize: Optional[int] = None, dtype_backend: DtypeBackend = None, **extra_data: Any) pydantic.v1.main.SQLTableAsset#

Add a SQL table data asset to the datasource.

Parameters
  • name – The name of the SQL table asset. This can be any arbitrary string.

  • table_name – The name of the SQL table to read.

  • con – The SQLAlchemy connection engine or a string URL to connect to the database.

  • **kwargs – Additional keyword arguments to pass to pandas.read_sql_table().

Returns

The SQLTableAsset that has been added to this datasource.

add_stata_asset(name: str, filepath_or_buffer: pydantic.v1.types.FilePath | pydantic.v1.networks.AnyUrl, *, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, convert_dates: bool = True, convert_categoricals: bool = True, index_col: Optional[str] = None, convert_missing: bool = False, preserve_dtypes: bool = True, columns: Union[Sequence[str], None] = None, order_categoricals: bool = True, chunksize: Optional[int] = None, iterator: bool = False, compression: CompressionOptions = 'infer', storage_options: Union[StorageOptions, None] = None, **extra_data: Any) pydantic.v1.main.StataAsset#

Add a Stata data asset to the datasource.

Parameters
  • name – The name of the Stata asset. This can be any arbitrary string.

  • filepath_or_buffer – The path to the Stata file or a URL pointing to the Stata file.

  • **kwargs – Additional keyword arguments to pass to pandas.read_stata().

Returns

The StataAsset that has been added to this datasource.

add_table_asset(name: str, filepath_or_buffer: pydantic.v1.types.FilePath | pydantic.v1.networks.AnyUrl, *, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, sep: Optional[str] = None, delimiter: Optional[str] = None, header: Union[int, Sequence[int], None, Literal['infer']] = 'infer', names: Union[Sequence[str], None] = None, index_col: Union[IndexLabel, Literal[False], None] = None, usecols: Optional[Union[int, str, Sequence[int]]] = None, dtype: Optional[dict] = None, engine: Union[CSVEngine, None] = None, true_values: Optional[List] = None, false_values: Optional[List] = None, skipinitialspace: bool = False, skiprows: Optional[Union[Sequence[int], int]] = None, skipfooter: int = 0, nrows: Optional[int] = None, na_values: Union[Sequence[str], None] = None, keep_default_na: bool = True, na_filter: bool = True, verbose: bool = False, skip_blank_lines: bool = True, parse_dates: Union[bool, Sequence[str]] = False, infer_datetime_format: bool = None, keep_date_col: bool = False, date_format: Optional[str] = None, dayfirst: bool = False, cache_dates: bool = True, iterator: bool = False, chunksize: Optional[int] = None, compression: CompressionOptions = 'infer', thousands: Optional[str] = None, decimal: str = '.', lineterminator: Optional[str] = None, quotechar: str = '"', quoting: int = 0, doublequote: bool = True, escapechar: Optional[str] = None, comment: Optional[str] = None, encoding: Optional[str] = None, encoding_errors: Optional[str] = 'strict', dialect: Optional[str] = None, on_bad_lines: str = 'error', delim_whitespace: bool = False, low_memory: bool = True, memory_map: bool = False, float_precision: Optional[str] = None, storage_options: Union[StorageOptions, None] = None, dtype_backend: DtypeBackend = None, **extra_data: Any) pydantic.v1.main.TableAsset#

Add a Table data asset to the datasource.

Parameters
  • name – The name of the Table asset. This can be any arbitrary string.

  • filepath_or_buffer – The path to the Table file or a URL pointing to the Table file.

  • **kwargs – Additional keyword arguments to pass to pandas.read_table().

Returns

The TableAsset that has been added to this datasource.

add_xml_asset(name: str, path_or_buffer: pydantic.v1.types.FilePath | pydantic.v1.networks.AnyUrl, *, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, xpath: str = './*', namespaces: Optional[Dict[str, str]] = None, elems_only: bool = False, attrs_only: bool = False, names: Union[Sequence[str], None] = None, dtype: Optional[dict] = None, encoding: Optional[str] = 'utf-8', stylesheet: Union[FilePath, None] = None, iterparse: Optional[Dict[str, List[str]]] = None, compression: CompressionOptions = 'infer', storage_options: Union[StorageOptions, None] = None, dtype_backend: DtypeBackend = None, **extra_data: Any) pydantic.v1.main.XMLAsset#

Add an XML data asset to the datasource.

Parameters
  • name – The name of the XML asset. This can be any arbitrary string.

  • path_or_buffer – The path to the XML file or a URL pointing to the XML file.

  • **kwargs – Additional keyword arguments to pass to pandas.read_xml().

Returns

The XMLAsset that has been added to this datasource.

delete_asset(name: str) None#

Removes the DataAsset referred to by asset_name from internal list of available DataAsset objects.

Parameters

name – name of DataAsset to be deleted.

get_asset(name: str) great_expectations.datasource.fluent.interfaces._DataAssetT#

Returns the DataAsset referred to by asset_name

Parameters

name – name of DataAsset sought.

Returns

_DataAssetT – if named “DataAsset” object exists; otherwise, exception is raised.

read_clipboard(asset_name: Optional[str] = None, *, name: str, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, sep: str = '\s+', dtype_backend: DtypeBackend = None, kwargs: Optional[dict] = None, **extra_data: Any) great_expectations.datasource.fluent.interfaces.Batch#

Read a clipboard and return a Batch containing the data.

Parameters
  • asset_name – The name of the clipboard asset, should you wish to use it again.

  • **kwargs – Additional keyword arguments to pass to pandas.read_clipboard().

Returns

A Batch using an ephemeral ClipboardAsset.

read_csv(filepath_or_buffer: pydantic.v1.types.FilePath | pydantic.v1.networks.AnyUrl, asset_name: Optional[str] = None, *, name: str, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, sep: Optional[str] = None, delimiter: Optional[str] = None, header: Union[int, Sequence[int], None, Literal['infer']] = 'infer', names: Union[Sequence[str], None] = None, index_col: Union[IndexLabel, Literal[False], None] = None, usecols: Optional[Union[int, str, Sequence[int]]] = None, dtype: Optional[dict] = None, engine: Union[CSVEngine, None] = None, true_values: Optional[List] = None, false_values: Optional[List] = None, skipinitialspace: bool = False, skiprows: Optional[Union[Sequence[int], int]] = None, skipfooter: int = 0, nrows: Optional[int] = None, na_values: Union[Sequence[str], None] = None, keep_default_na: bool = True, na_filter: bool = True, verbose: bool = False, skip_blank_lines: bool = True, parse_dates: Union[bool, Sequence[str], None] = None, infer_datetime_format: bool = None, keep_date_col: bool = False, date_format: Optional[str] = None, dayfirst: bool = False, cache_dates: bool = True, iterator: bool = False, chunksize: Optional[int] = None, compression: CompressionOptions = 'infer', thousands: Optional[str] = None, decimal: str = '.', lineterminator: Optional[str] = None, quotechar: str = '"', quoting: int = 0, doublequote: bool = True, escapechar: Optional[str] = None, comment: Optional[str] = None, encoding: Optional[str] = None, encoding_errors: Optional[str] = 'strict', dialect: Optional[str] = None, on_bad_lines: str = 'error', delim_whitespace: bool = False, low_memory: bool = True, memory_map: bool = False, float_precision: Union[Literal['high', 'legacy'], None] = None, storage_options: Union[StorageOptions, None] = None, dtype_backend: DtypeBackend = None, **extra_data: Any) great_expectations.datasource.fluent.interfaces.Batch#

Read a CSV file and return a Batch containing the data.

Parameters
  • filepath_or_buffer – The path to the CSV file or a URL pointing to the CSV file.

  • asset_name – The name of the CSV asset, should you wish to use it again.

  • **kwargs – Additional keyword arguments to pass to pandas.read_csv().

Returns

A Batch using an ephemeral CSVAsset.

read_dataframe(dataframe: pd.DataFrame, asset_name: Optional[str] = None, batch_metadata: Optional[BatchMetadata] = None) Batch#

Reads a Dataframe and returns a Batch containing the data.

Parameters
  • dataframe – The Dataframe containing the data for this data asset.

  • asset_name – The name of the Dataframe asset, should you wish to use it again.

  • batch_metadata – An arbitrary user defined dictionary with string keys which will get inherited by any batches created from the asset.

Returns

A Batch using an ephemeral DataFrameAsset.

read_excel(io: os.PathLike | str | bytes, asset_name: Optional[str] = None, *, name: str, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, sheet_name: Optional[Union[str, int, List[Union[int, str]]]] = 0, header: Union[int, Sequence[int], None] = 0, names: Optional[List[str]] = None, index_col: Union[int, Sequence[int], None] = None, usecols: Optional[Union[int, str, Sequence[int]]] = None, dtype: Optional[dict] = None, engine: Union[Literal['xlrd', 'openpyxl', 'odf', 'pyxlsb'], None] = None, true_values: Union[Iterable[str], None] = None, false_values: Union[Iterable[str], None] = None, skiprows: Optional[Union[Sequence[int], int]] = None, nrows: Optional[int] = None, na_values: Any = None, keep_default_na: bool = True, na_filter: bool = True, verbose: bool = False, parse_dates: Union[List, Dict, bool] = False, date_format: Optional[str] = None, thousands: Optional[str] = None, decimal: str = '.', comment: Optional[str] = None, skipfooter: int = 0, storage_options: Union[StorageOptions, None] = None, dtype_backend: DtypeBackend = None, engine_kwargs: Optional[Dict] = None, **extra_data: Any) Batch#

Read an Excel file and return a Batch containing the data.

Parameters
  • io – The path to the Excel file or a URL pointing to the Excel file.

  • asset_name – The name of the Excel asset, should you wish to use it again.

  • **kwargs – Additional keyword arguments to pass to pandas.read_excel().

Returns

A Batch using an ephemeral ExcelAsset.

read_feather(path: pydantic.v1.types.FilePath | pydantic.v1.networks.AnyUrl, asset_name: Optional[str] = None, *, name: str, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, columns: Union[Sequence[str], None] = None, use_threads: bool = True, storage_options: Union[StorageOptions, None] = None, dtype_backend: DtypeBackend = None, **extra_data: Any) great_expectations.datasource.fluent.interfaces.Batch#

Read a Feather file and return a Batch containing the data.

Parameters
  • path – The path to the Feather file or a URL pointing to the Feather file.

  • asset_name – The name of the Feather asset, should you wish to use it again.

  • **kwargs – Additional keyword arguments to pass to pandas.read_feather().

Returns

A Batch using an ephemeral FeatherAsset.

read_fwf(filepath_or_buffer: pydantic.v1.types.FilePath | pydantic.v1.networks.AnyUrl, asset_name: Optional[str] = None, *, name: str, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, colspecs: Union[Sequence[Tuple[int, int]], str, None] = 'infer', widths: Union[Sequence[int], None] = None, infer_nrows: int = 100, dtype_backend: DtypeBackend = None, kwargs: Optional[dict] = None, **extra_data: Any) great_expectations.datasource.fluent.interfaces.Batch#

Read a Fixed Width File and return a Batch containing the data.

Parameters
  • filepath_or_buffer – The path to the file or a URL pointing to the Feather file.

  • asset_name – The name of the asset, should you wish to use it again.

  • **kwargs – Additional keyword arguments to pass to pandas.read_fwf().

Returns

A Batch using an ephemeral FWFAsset.

read_gbq(query: str, asset_name: Optional[str] = None, *, name: str, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, project_id: Optional[str] = None, index_col: Optional[str] = None, col_order: Optional[List[str]] = None, reauth: bool = False, auth_local_webserver: bool = True, dialect: Optional[str] = None, location: Optional[str] = None, configuration: Optional[Dict[str, Any]] = None, use_bqstorage_api: Optional[bool] = None, max_results: Optional[int] = None, progress_bar_type: Optional[str] = None, **extra_data: Any) great_expectations.datasource.fluent.interfaces.Batch#

Read a Google BigQuery query and return a Batch containing the data.

Parameters
  • query – The SQL query to send to Google BigQuery.

  • asset_name – The name of the GBQ asset, should you wish to use it again.

  • **kwargs – Additional keyword arguments to pass to pandas.read_gbq().

Returns

A Batch using an ephemeral GBQAsset.

read_hdf(path_or_buf: pd.HDFStore | os.PathLike | str, asset_name: Optional[str] = None, *, name: str, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, key: Any = None, mode: str = 'r', errors: str = 'strict', where: Optional[Union[str, List]] = None, start: Optional[int] = None, stop: Optional[int] = None, columns: Optional[List[str]] = None, iterator: bool = False, chunksize: Optional[int] = None, kwargs: Optional[dict] = None, **extra_data: Any) Batch#

Read an HDF file and return a Batch containing the data.

Parameters
  • path_or_buf – The path to the HDF file or a URL pointing to the HDF file.

  • asset_name – The name of the HDF asset, should you wish to use it again.

  • **kwargs – Additional keyword arguments to pass to pandas.read_hdf().

Returns

A Batch using an ephemeral HDFAsset.

read_html(io: os.PathLike | str, asset_name: Optional[str] = None, *, name: str, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, match: Union[str, Pattern] = '.+', flavor: Optional[str] = None, header: Union[int, Sequence[int], None] = None, index_col: Union[int, Sequence[int], None] = None, skiprows: Optional[Union[Sequence[int], int]] = None, attrs: Optional[Dict[str, str]] = None, parse_dates: bool = False, thousands: Optional[str] = ',', encoding: Optional[str] = None, decimal: str = '.', converters: Optional[Dict] = None, na_values: Union[Iterable[object], None] = None, keep_default_na: bool = True, displayed_only: bool = True, extract_links: Literal[None, 'header', 'footer', 'body', 'all'] = None, dtype_backend: DtypeBackend = None, storage_options: StorageOptions = None, **extra_data: Any) Batch#

Read an HTML file and return a Batch containing the data.

Parameters
  • io – The path to the HTML file or a URL pointing to the HTML file.

  • asset_name – The name of the HTML asset, should you wish to use it again.

  • **kwargs – Additional keyword arguments to pass to pandas.read_html().

Returns

A Batch using an ephemeral HTMLAsset.

read_json(path_or_buf: pydantic.v1.types.Json | pydantic.v1.types.FilePath | pydantic.v1.networks.AnyUrl, asset_name: Optional[str] = None, *, name: str, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, orient: Optional[str] = None, typ: Literal['frame', 'series'] = 'frame', dtype: Optional[dict] = None, convert_axes: Optional[bool] = None, convert_dates: Union[bool, List[str]] = True, keep_default_dates: bool = True, precise_float: bool = False, date_unit: Optional[str] = None, encoding: Optional[str] = None, encoding_errors: Optional[str] = 'strict', lines: bool = False, chunksize: Optional[int] = None, compression: CompressionOptions = 'infer', nrows: Optional[int] = None, storage_options: Union[StorageOptions, None] = None, dtype_backend: DtypeBackend = None, **extra_data: Any) great_expectations.datasource.fluent.interfaces.Batch#

Read a JSON file and return a Batch containing the data.

Parameters
  • path_or_buf – The path to the JSON file or a URL pointing to the JSON file.

  • asset_name – The name of the JSON asset, should you wish to use it again.

  • **kwargs – Additional keyword arguments to pass to pandas.read_json().

Returns

A Batch using an ephemeral JSONAsset.

read_orc(path: pydantic.v1.types.FilePath | pydantic.v1.networks.AnyUrl, asset_name: Optional[str] = None, *, name: str, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, columns: Optional[List[str]] = None, dtype_backend: DtypeBackend = None, kwargs: Optional[dict] = None, **extra_data: Any) great_expectations.datasource.fluent.interfaces.Batch#

Read an ORC file and return a Batch containing the data.

Parameters
  • path – The path to the ORC file.

  • asset_name (optional) – The asset name to use for the ORC file, should you wish to use or refer to it again.

  • **kwargs – Additional kwargs to pass to the ORC reader.

Returns

A Batch using an ephemeral ORCAsset.

read_parquet(path: pydantic.v1.types.FilePath | pydantic.v1.networks.AnyUrl, asset_name: Optional[str] = None, *, name: str, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, engine: str = 'auto', columns: Optional[List[str]] = None, storage_options: Union[StorageOptions, None] = None, use_nullable_dtypes: bool = None, dtype_backend: DtypeBackend = None, kwargs: Optional[dict] = None, **extra_data: Any) great_expectations.datasource.fluent.interfaces.Batch#

Read a parquet file and return a Batch containing the data.

Parameters
  • path – The path to the parquet file.

  • asset_name (optional) – The asset name to use for the parquet file, should you wish to use or refer to it again.

  • **kwargs – Additional kwargs to pass to the parquet reader.

Returns

A Batch using an ephemeral ParquetAsset.

read_pickle(filepath_or_buffer: pydantic.v1.types.FilePath | pydantic.v1.networks.AnyUrl, asset_name: Optional[str] = None, *, name: str, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, compression: CompressionOptions = 'infer', storage_options: Union[StorageOptions, None] = None, **extra_data: Any) great_expectations.datasource.fluent.interfaces.Batch#

Read a pickle file and return a Batch containing the data.

Parameters
  • filepath_or_buffer – The path to the pickle file.

  • asset_name (optional) – The asset name to use for the pickle file, should you wish to use or refer to it again.

  • **kwargs – Additional kwargs to pass to the pickle reader.

Returns

A Batch using an ephemeral PickleAsset.

read_sas(filepath_or_buffer: pydantic.v1.types.FilePath | pydantic.v1.networks.AnyUrl, asset_name: Optional[str] = None, *, name: str, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, format: Optional[str] = None, index: Optional[str] = None, encoding: Optional[str] = None, chunksize: Optional[int] = None, iterator: bool = False, compression: CompressionOptions = 'infer', **extra_data: Any) great_expectations.datasource.fluent.interfaces.Batch#

Read a SAS file and return a Batch containing the data.

Parameters
  • filepath_or_buffer – The path to the SAS file or a URL pointing to the SAS file.

  • asset_name – The name of the SAS asset, should you wish to use it again.

  • **kwargs – Additional keyword arguments to pass to pandas.read_sas().

Returns

A Batch using an ephemeral SASAsset.

read_spss(path: pydantic.v1.types.FilePath, asset_name: Optional[str] = None, *, name: str, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, usecols: Optional[Union[int, str, Sequence[int]]] = None, convert_categoricals: bool = True, dtype_backend: DtypeBackend = None, **extra_data: Any) great_expectations.datasource.fluent.interfaces.Batch#

Read an SPSS file and return a Batch containing the data.

Parameters
  • path – The path to the SPSS file.

  • asset_name – The name of the SPSS asset, should you wish to use it again.

  • **kwargs – Additional keyword arguments to pass to pandas.read_spss().

Returns

A Batch using an ephemeral SPSSAsset.

read_sql(sql: sa.select | sa.text | str, con: sqlalchemy.Engine | sqlite3.Connection | str, asset_name: Optional[str] = None, *, name: str, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, index_col: Optional[Union[str, List[str]]] = None, coerce_float: bool = True, params: Any = None, parse_dates: Any = None, columns: Optional[List[str]] = None, chunksize: Optional[int] = None, dtype_backend: DtypeBackend = None, dtype: Optional[dict] = None, **extra_data: Any) Batch#

Read a SQL query and return a Batch containing the data.

Parameters
  • sql – The SQL query to send to the database.

  • con – The SQLAlchemy connection engine or a string URL to connect to the database.

  • asset_name – The name of the SQL asset, should you wish to use it again.

  • **kwargs – Additional keyword arguments to pass to pandas.read_sql().

Returns

A Batch using an ephemeral SQLAsset.

read_sql_query(sql: sa.select | sa.text | str, con: sqlalchemy.Engine | sqlite3.Connection | str, asset_name: Optional[str] = None, *, name: str, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, index_col: Optional[Union[str, List[str]]] = None, coerce_float: bool = True, parse_dates: Optional[Union[List[str], Dict[str, str]]] = None, chunksize: Optional[int] = None, dtype: Optional[dict] = None, dtype_backend: DtypeBackend = None, **extra_data: Any) Batch#

Read a SQL query and return a Batch containing the data.

Parameters
  • sql – The SQL query to send to the database.

  • con – The SQLAlchemy connection engine or a string URL to connect to the database.

  • asset_name – The name of the SQL query asset, should you wish to use it again.

  • **kwargs – Additional keyword arguments to pass to pandas.read_sql_query().

Returns

A Batch using an ephemeral SQLQueryAsset.

read_sql_table(table_name: str, con: sqlalchemy.engine.base.Engine | str, asset_name: Optional[str] = None, *, name: str, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, schema: Optional[str] = None, index_col: Optional[Union[str, List[str]]] = None, coerce_float: bool = True, parse_dates: Optional[Union[List[str], Dict[str, str]]] = None, columns: Optional[List[str]] = None, chunksize: Optional[int] = None, dtype_backend: DtypeBackend = None, **extra_data: Any) great_expectations.datasource.fluent.interfaces.Batch#

Read a SQL table and return a Batch containing the data.

Parameters
  • table_name – The name of the SQL table to read.

  • con – The SQLAlchemy connection engine or a string URL to connect to the database.

  • asset_name – The name of the SQL table asset, should you wish to use it again.

  • **kwargs – Additional keyword arguments to pass to pandas.read_sql_table().

Returns

A Batch using an ephemeral SQLTableAsset.

read_stata(filepath_or_buffer: pydantic.v1.types.FilePath | pydantic.v1.networks.AnyUrl, asset_name: Optional[str] = None, *, name: str, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, convert_dates: bool = True, convert_categoricals: bool = True, index_col: Optional[str] = None, convert_missing: bool = False, preserve_dtypes: bool = True, columns: Union[Sequence[str], None] = None, order_categoricals: bool = True, chunksize: Optional[int] = None, iterator: bool = False, compression: CompressionOptions = 'infer', storage_options: Union[StorageOptions, None] = None, **extra_data: Any) great_expectations.datasource.fluent.interfaces.Batch#

Read a Stata file and return a Batch containing the data.

Parameters
  • filepath_or_buffer – The path to the Stata file or a URL pointing to the Stata file.

  • asset_name – The name of the Stata asset, should you wish to use it again.

  • **kwargs – Additional keyword arguments to pass to pandas.read_stata().

Returns

A Batch using an ephemeral StataAsset.

read_table(filepath_or_buffer: pydantic.v1.types.FilePath | pydantic.v1.networks.AnyUrl, asset_name: Optional[str] = None, *, name: str, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, sep: Optional[str] = None, delimiter: Optional[str] = None, header: Union[int, Sequence[int], None, Literal['infer']] = 'infer', names: Union[Sequence[str], None] = None, index_col: Union[IndexLabel, Literal[False], None] = None, usecols: Optional[Union[int, str, Sequence[int]]] = None, dtype: Optional[dict] = None, engine: Union[CSVEngine, None] = None, true_values: Optional[List] = None, false_values: Optional[List] = None, skipinitialspace: bool = False, skiprows: Optional[Union[Sequence[int], int]] = None, skipfooter: int = 0, nrows: Optional[int] = None, na_values: Union[Sequence[str], None] = None, keep_default_na: bool = True, na_filter: bool = True, verbose: bool = False, skip_blank_lines: bool = True, parse_dates: Union[bool, Sequence[str]] = False, infer_datetime_format: bool = None, keep_date_col: bool = False, date_format: Optional[str] = None, dayfirst: bool = False, cache_dates: bool = True, iterator: bool = False, chunksize: Optional[int] = None, compression: CompressionOptions = 'infer', thousands: Optional[str] = None, decimal: str = '.', lineterminator: Optional[str] = None, quotechar: str = '"', quoting: int = 0, doublequote: bool = True, escapechar: Optional[str] = None, comment: Optional[str] = None, encoding: Optional[str] = None, encoding_errors: Optional[str] = 'strict', dialect: Optional[str] = None, on_bad_lines: str = 'error', delim_whitespace: bool = False, low_memory: bool = True, memory_map: bool = False, float_precision: Optional[str] = None, storage_options: Union[StorageOptions, None] = None, dtype_backend: DtypeBackend = None, **extra_data: Any) great_expectations.datasource.fluent.interfaces.Batch#

Read a Table file and return a Batch containing the data.

Parameters
  • filepath_or_buffer – The path to the Table file or a URL pointing to the Table file.

  • asset_name – The name of the Table asset, should you wish to use it again.

  • **kwargs – Additional keyword arguments to pass to pandas.read_table().

Returns

A Batch using an ephemeral TableAsset.

read_xml(path_or_buffer: pydantic.v1.types.FilePath | pydantic.v1.networks.AnyUrl, asset_name: Optional[str] = None, *, name: str, id: Optional[uuid.UUID] = None, order_by: List[great_expectations.datasource.fluent.interfaces.Sorter] = None, batch_metadata: Dict[str, Any] = None, batch_definitions: List[great_expectations.core.batch_definition.BatchDefinition] = None, xpath: str = './*', namespaces: Optional[Dict[str, str]] = None, elems_only: bool = False, attrs_only: bool = False, names: Union[Sequence[str], None] = None, dtype: Optional[dict] = None, encoding: Optional[str] = 'utf-8', stylesheet: Union[FilePath, None] = None, iterparse: Optional[Dict[str, List[str]]] = None, compression: CompressionOptions = 'infer', storage_options: Union[StorageOptions, None] = None, dtype_backend: DtypeBackend = None, **extra_data: Any) great_expectations.datasource.fluent.interfaces.Batch#

Read an XML file and return a Batch containing the data.

Parameters
  • path_or_buffer – The path to the XML file or a URL pointing to the XML file.

  • asset_name – The name of the XML asset, should you wish to use it again.

  • **kwargs – Additional keyword arguments to pass to pandas.read_xml().

Returns

A Batch using an ephemeral XMLAsset.